Friday, 3 July 2015

Scraping data from a list of web pages using Google Docs

Quite often when you’re looking for data as part of a story, that data will not be on a single page, but on a series of pages. To manually copy the data from each one – or even scrape the data individually – would take time. Here I explain a way to use Google Docs to grab the data for you.

Some basic principles

Although Google Docs is a pretty clumsy tool to use to scrape webpages, the method used is much the same as if you were writing a scraper in a programming language like Python or Ruby. For that reason, I think this is a good quick way to introduce the basics of certain types of scrapers.

Here’s how it works:

Firstly, you need a list of links to the pages containing data.

Quite often that list might be on a webpage which links to them all, but if not you should look at whether the links have any common structure, for example “http://www.country.com/data/australia” or “http://www.country.com/data/country2″. If it does, then you can generate a list by filling in the part of the URL that changes each time (in this case, the country name or number), assuming you have a list to fill it from (i.e. a list of countries, codes or simple addition).

Second, you need the destination pages to have some consistent structure to them. In other words, they should look the same (although looking the same doesn’t mean they have the same structure – more on this below).

The scraper then cycles through each link in your list, grabs particular bits of data from each linked page (because it is always in the same place), and saves them all in one place.

Scraping with Google Docs using =importXML – a case study

If you’ve not used =importXML before it’s worth catching up on my previous 2 posts How to scrape webpages and ask questions with Google Docs and =importXML and Asking questions of a webpage – and finding out when those answers change.

This takes things a little bit further.

In this case I’m going to scrape some data for a story about local history – the data for which is helpfully published by the Durham Mining Museum. Their homepage has a list of local mining disasters, with the date and cause of the disaster, the name and county of the colliery, the number of deaths, and links to the names and to a page about each colliery.

However, there is not enough geographical information here to map the data. That, instead, is provided on each colliery’s individual page.

So we need to go through this list of webpages, grab the location information, and pull it all together into a single list.

Finding the structure in the HTML

To do this we need to isolate which part of the homepage contains the list. If you right-click on the page to ‘view source’ and search for ‘Haig’ (the first colliery listed) we can see it’s in a table that has a beginning tag like so: <table border=0 align=center style=”font-size:10pt”>

We can use =importXML to grab the contents of the table like so:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]“)

But we only want the links, so how do we grab just those instead of the whole table contents?

The answer is to add more detail to our request. If we look at the HTML that contains the link, it looks like this:

<td valign=top><a href=”http://www.dmm.org.uk/colliery/h029.htm“>Haig&nbsp;Pit</a></td>

So it’s within a <td> tag – but all the data in this table is, not surprisingly, contained within <td> tags. The key is to identify which <td> tag we want – and in this case, it’s always the fourth one in each row.

So we can add “//td[4]” (‘look for the fourth <td> tag’) to our function like so:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]//td[4]“)

Now we should have a list of the collieries – but we want the actual URL of the page that is linked to with that text. That is contained within the value of the href attribute – or, put in plain language: it comes after the bit that says href=”.

So we just need to add one more bit to our function: “//@href”:

=Importxml(“http://www.dmm.org.uk/mindex.htm”, ”//table[starts-with(@style, ‘font-size:10pt’)]//td[4]//@href”)

So, reading from the far right inwards, this is what it says: “Grab the value of href, within the fourth <td> tag on every row, of the table that has a style value of font-size:10pt”

Note: if there was only one link in every row, we wouldn’t need to include //td[4] to specify the link we needed.

Scraping data from each link in a list

Now we have a list – but we still need to scrape some information from each link in that list

Firstly, we need to identify the location of information that we need on the linked pages. Taking the first page, view source and search for ‘Sheet 89′, which are the first two words of the ‘Map Ref’ line.

The HTML code around that information looks like this:

<td valign=top>(Sheet 89) NX965176, 54° 32' 35" N, 3° 36' 0" W</td>

Looking a little further up, the table that contains this cell uses HTML like this:

<table border=0 width=”95%”>

So if we needed to scrape this information, we would write a function like this:

=importXML(“http://www.dmm.org.uk/colliery/h029.htm”, “//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]“)

…And we’d have to write it for every URL.

But because we have a list of URLs, we can do this much quicker by using cell references instead of the full URL.

So. Let’s assume that your formula was in cell C2 (as it is in this example), and the results have formed a column of links going from C2 down to C11. Now we can write a formula that looks at each URL in turn and performs a scrape on it.

In D2 then, we type the following:

=importXML(C2, “//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]“)

If you copy the cell all the way down the column, it will change the function so that it is performed on each neighbouring cell.

In fact, we could simplify things even further by putting the second part of the function in cell D1 – without the quotation marks – like so:

//table[starts-with(@width, ‘95%’)]//tr[2]//td[2]

And then in D2 change the formula to this:

=ImportXML(C2,$D$1)

(The dollar signs keep the D1 reference the same even when the formula is copied down, while C2 will change in each cell)

Now it works – we have the data from each of 8 different pages. Almost.

Troubleshooting with =IF

The problem is that the structure of those pages is not as consistent as we thought: the scraper is producing extra cells of data for some, which knocks out the data that should be appearing there from other cells.

So I’ve used an IF formula to clean that up as follows:

In cell E2 I type the following:

=if(D2=””, ImportXML(C2,$D$1), D2)

Which says ‘If D2 is empty, then run the importXML formula again and put the results here, but if it’s not empty then copy the values across‘

That formula is copied down the column.

But there’s still one empty column even now, so the same formula is used again in column F:

=if(E2=””, ImportXML(C2,$D$1), E2)

A hack, but an instructive one

As I said earlier, this isn’t the best way to write a scraper, but it is a useful way to start to understand how they work, and a quick method if you don’t have huge numbers of pages to scrape. With hundreds of pages, it’s more likely you will miss problems – so watch out for inconsistent structure and data that doesn’t line up.

Source: http://onlinejournalismblog.com/2011/10/14/scraping-data-from-a-list-of-webpages-using-google-docs/

Thursday, 25 June 2015

Data Scraping - What Are Hand-Scraped Hardwood Floors and What Are the Benefits?

If you love the look of hardwood flooring with lots of character, then you may want to check out hand-scraped hardwood flooring. Hand-scraped wood provides a warm vintage look, providing the floor instant character. These types of scraped hardwoods are suitable for living rooms, dining rooms, hallways and bedrooms. But what exactly is hand-scraped hardwood flooring?

Well, it is literally what you think it is. Hand-scraped hardwood flooring is created by hand using specialized wood working tools to make each board unique and giving an overall "old worn" appearance.

At Innovation Builders we offer solid wood floors finished on site with an actual hand-scraping technique followed by stain and sealer. Solid wood floors are installed by an expert team of technicians who work each board with skilled craftsman-like attention to detail. Following the scraping procedure the floor is stained by hand with a customer selected stain color, and then protected with multiple coats of sealing and finishing polyurethane. This finishing process of staining, sealing and coating the wood floors contributes to providing the look and durability of an old reclaimed wood floor, but with today's tough, urethane finishes.

There are many, many benefits to hand-scraped wood flooring. Overall, these floors are extremely durable and hard wearing, providing years of trouble-free use. These wood floors remain looking newer for longer because the texture that the process provides hides the typical dents, dings and scratches that other floors can't hide so easily. That's great news for households with kids, dogs, and cats.

These types of wood flooring have another unique advantage as well. When you do scratch these floors during their lifetime, the scratches are easily repaired. As long as the scratch isn't too deep you can make them practically disappear without ever having to hire a professional. It's simple to hide the scratch by using a color-matched stain marker or repair kit that is readily available through local flooring distributors. These features make hand-scraped hardwood flooring a lot more durable and hassle-free to maintain than other types of wood flooring.

The expert processes utilized in the creation of these floors provides a custom look of worn wood with deep color and subtle highlights. When the light hits the wood at different times during the day, it provides an understated but powerful effect of depth and beauty. They instantly offer your rooms a rustic look full of character, allowing your home to become a warm and inviting environment. The rustic look of this wood provides a texture, style and rustic appeal that cannot be matched by any other type of flooring.

Hand-Scraped Hardwood Flooring is a floor that says welcome and adds a touch of elegance to any home. If you are looking to buy a new home and you haven't had the opportunity to see or feel hand scraped hardwoods, stop in any of the model homes at Innovation Builders in Keller, North Richland Hills or Grand Prairie, Texas and check it out!

Source: http://ezinearticles.com/?What-Are-Hand-Scraped-Hardwood-Floors-and-What-Are-the-Benefits?&id=6026646

Saturday, 20 June 2015

Web scraping in under 60 seconds: the magic of import.io

Import.io is a very powerful and easy-to-use tool for data extraction that has the aim of getting data from any website in a structured way. It is meant for non-programmers that need data (and for programmers who don’t want to overcomplicate their lives).

I almost forgot!! Apart from everything, it is also a free tool (o_O)

The purpose of this post is to teach you how to scrape a website and make a dataset and/or API in under 60 seconds. Are you ready?

It’s very simple. You just have to go to http://magic.import.io; post the URL of the site you want to scrape, and push the “GET DATA” button. Yes! It is that simple! No plugins, downloads, previous knowledge or registration are necessary. You can do this from any browser; it even works on tablets and smartphones.

For example: if we want to have a table with the information on all items related to Chewbacca on MercadoLibre (a Latin American version of eBay), we just need to go to that site and make a search – then copy and paste the link (http://listado.mercadolibre.com.mx/chewbacca) on Import.io, and push the “GET DATA” button.

You’ll notice that now you have all the information on a table, and all you need to do is remove the columns you don’t need. To do this, just place the mouse pointer on top of the column you want to delete, and an “X” will appear.

Good news for those of us who are a bit more technically-oriented! There is a button that says “GET API” and this one is good to, well, generate an API that will update the data on each request. For this you need to create an account (which is also free of cost).

As you saw, we can scrape any website in under 60 seconds, even if it includes tons of results pages. This truly is magic, no? For more complex things that require logins, entering subwebs, automatized searches, et cetera, there is downloadable import.io software… But I’ll explain that in a different post.

Source: http://schoolofdata.org/2014/12/09/web-scraping-in-under-60-seconds-the-magic-of-import-io/

Tuesday, 9 June 2015

Web Scraping Services : Making Modern File Formats More Accessible

Data scraping is the process of automatically sorting through information contained on the internet inside html, PDF or other documents and collecting relevant information to into databases and spreadsheets for later retrieval. On most websites, the text is easily and accessibly written in the source code but an increasing number of businesses are using Adobe PDF format (Portable Document Format: A format which can be viewed by the free Adobe Acrobat software on almost any operating system. See below for a link.). The advantage of PDF format is that the document looks exactly the same no matter which computer you view it from making it ideal for business forms, specification sheets, etc.; the disadvantage is that the text is converted into an image from which you often cannot easily copy and paste. PDF Scraping is the process of data scraping information contained in PDF files. To PDF scrape a PDF document, you must employ a more diverse set of tools.

There are two main types of PDF files: those built from a text file and those built from an image (likely scanned in). Adobe's own software is capable of PDF scraping from text-based PDF files but special tools are needed for PDF scraping text from image-based PDF files. The primary tool for PDF scraping is the OCR program. OCR, or Optical Character Recognition, programs scan a document for small pictures that they can separate into letters. These pictures are then compared to actual letters and if matches are found, the letters are copied into a file. OCR programs can perform PDF scraping of image-based PDF files quite accurately but they are not perfect.

Once the OCR program or Adobe program has finished PDF scraping a document, you can search through the data to find the parts you are most interested in. This information can then be stored into your favorite database or spreadsheet program. Some PDF scraping programs can sort the data into databases and/or spreadsheets automatically making your job that much easier.

Quite often you will not find a PDF scraping program that will obtain exactly the data you want without customization. Surprisingly a search on Google only turned up one business, that will create a customized PDF scraping utility for your project. A handful of off the shelf utilities claim to be customizable, but seem to require a bit of programming knowledge and time commitment to use effectively. Obtaining the data yourself with one of these tools may be possible but will likely prove quite tedious and time consuming. It may be advisable to contract a company that specializes in PDF scraping to do it for you quickly and professionally.

Let's explore some real world examples of the uses of PDF scraping technology. A group at Cornell University wanted to improve a database of technical documents in PDF format by taking the old PDF file where the links and references were just images of text and changing the links and references into working clickable links thus making the database easy to navigate and cross-reference. They employed a PDF scraping utility to deconstruct the PDF files and figure out where the links were. They then could create a simple script to re-create the PDF files with working links replacing the old text image.

A computer hardware vendor wanted to display specifications data for his hardware on his website. He hired a company to perform PDF scraping of the hardware documentation on the manufacturers' website and save the PDF scraped data into a database he could use to update his webpage automatically.

PDF Scraping is just collecting information that is available on the public internet. PDF Scraping does not violate copyright laws.

PDF Scraping is a great new technology that can significantly reduce your workload if it involves retrieving information from PDF files. Applications exist that can help you with smaller, easier PDF Scraping projects but companies exist that will create custom applications for larger or more intricate PDF Scraping jobs.

Source: http://ezinearticles.com/?PDF-Scraping:-Making-Modern-File-Formats-More-Accessible&id=193321

Tuesday, 2 June 2015

On-line directory tree webscraping

As you surf around the internet — particularly in the old days — you may have seen web-pages like this:

The former image is generated by Apache SVN server, and the latter is the plain directory view generated for UserDir on Apache.

In both cases you have a very primitive page that allows you to surf up and down the directory tree of the resource (either the SVN repository or a directory file system) and select links to resources that correspond to particular files.

Now, a file system can be thought of as a simple key-value store for these resources burdened by an awkward set of conventions for listing the keys where you keep being obstructed by the ‘/‘ character.

My objective is to provide a module that makes it easy to iterate through these directory trees and produce a flat table with the following helpful entries:

Although there is clearly redundant data between the fields url, abspath, fname, name, ext, having them in there makes it much easier to build a useful front end.

The function code (which I won’t copy in here) is at https://scraperwiki.com/scrapers/apache_directory_tree_extractor/. This contains the functions ParseSVNRevPage(url) and ParseSVNRevPageTree(url), both of which return dicts of the form:

{'url', 'rev', 'dirname', 'svnrepo',

 'contents':[{'url', 'abspath', 'fname', 'name', 'ext'}]}

I haven’t written the code for parsing the Apache Directory view yet, but for now we have something we can use.

I scraped the UK Cave Data Registry with this scraper which simply applies the ParseSVNRevPageTree() function to each of the links and glues the output into a flat array before saving it:

lrdata = ParseSVNRevPageTree(href)

ldata = [ ]

for cres in lrdata["contents"]:

    cres["svnrepo"], cres["rev"] = lrdata["svnrepo"], lrdata["rev"]

    ldata.append(cres)

scraperwiki.sqlite.save(["svnrepo", "rev", "abspath"], ldata)

Now that we have a large table of links, we can make the cave image file viewer based on the query:

select abspath, url, svnrepo from swdata where ext=’.jpg’ order by abspath limit 500

By clicking on a reference to a jpg resource on the left, you can preview what it looks like on the right.

If you want to know why the page is muddy, a video of the conditions in which the data was gathered is here.

Image files are usually the most immediately interesting out of any unknown file system dump. And they can be made more interesting by associating meta-data with them (given that no convention for including interesting information in the EXIF sections of their file formats). This meta-data might be floating around in other files dumped into the same repository — eg in the form of links to them from html pages which relate to picture captions.

But that is a future scraping project for another time.

Source: https://scraperwiki.wordpress.com/2012/09/14/on-line-directory-tree-webscraping/

Friday, 29 May 2015

Data Scraping Services - Scraping Yelp Business Data With Python Scraping Script

Yelp is a great source of business contact information with details like address, postal code, contact information; website addresses etc. that other site like Google Maps just does not. Yelp also provides reviews about the particular business. The yelp business database can be useful for telemarketing, email marketing and lead generation.

Are you looking for yelp business details database? Are you looking for scraping data from yelp website/business directory? Are you looking for yelp screen scraping software? Are you looking for scraping the business contact information from the online Yelp? Then you are at the right place.

Here I am going to discuss how to scrape yelp data for lead generation and email marketing. I have made a simple and straight forward yelp data scraping script in python that can scrape data from yelp website. You can use this yelp scraper script absolutely free.

I have used urllib, BeautifulSoup packages. Urllib package to make http request and parsed the HTML using BeautifulSoup, used Threads to make the scraping faster.

Yelp Scraping Python Script

import urllib from bs4 import BeautifulSoup import re from threading import Thread #List of yelp urls to scrape url=['http://www.yelp.com/biz/liman-fisch-restaurant-hamburg','http://www.yelp.com/biz/casa-franco-caramba-hamburg','http://www.yelp.com/biz/o-ren-ishii-hamburg','http://www.yelp.com/biz/gastwerk-hotel-hamburg-hamburg-2','http://www.yelp.com/biz/superbude-hamburg-2','http://www.yelp.com/biz/hotel-hafen-hamburg-hamburg','http://www.yelp.com/biz/hamburg-marriott-hotel-hamburg','http://www.yelp.com/biz/yoho-hamburg'] i=0 #function that will do actual scraping job def scrape(ur): html = urllib.urlopen(ur).read() soup = BeautifulSoup(html) title = soup.find('h1',itemprop="name") saddress = soup.find('span',itemprop="streetAddress") postalcode = soup.find('span',itemprop="postalCode") print title.text print saddress.text print postalcode.text print "-------------------" threadlist = [] #making threads while i<len(url): t = Thread(target=scrape,args=(url[i],)) t.start() threadlist.append(t) i=i+1 for b in
threadlist: b.join()

import urllib

from bs4 import BeautifulSoup

import re

from threading import Thread

 #List of yelp urls to scrape

url=['http://www.yelp.com/biz/liman-fisch-restaurant-hamburg','http://www.yelp.com/biz/casa-franco-caramba-hamburg','http://www.yelp.com/biz/o-ren-ishii-hamburg','http://www.yelp.com/biz/gastwerk-hotel-hamburg-hamburg-2','http://www.yelp.com/biz/superbude-hamburg-2','http://www.yelp.com/biz/hotel-hafen-hamburg-hamburg','http://www.yelp.com/biz/hamburg-marriott-hotel-hamburg','http://www.yelp.com/biz/yoho-hamburg']

 i=0

#function that will do actual scraping job

def scrape(ur):

           html = urllib.urlopen(ur).read()

          soup = BeautifulSoup(html)

       title = soup.find('h1',itemprop="name")

          saddress = soup.find('span',itemprop="streetAddress")

          postalcode = soup.find('span',itemprop="postalCode")

          print title.text

          print saddress.text

          print postalcode.text

          print "-------------------"

 threadlist = []

#making threads

while i<len(url):

          t = Thread(target=scrape,args=(url[i],))

          t.start()

          threadlist.append(t)

          i=i+1

for b in threadlist:

          b.join()

Recently I had worked for one German company and did yelp scraping project for them and delivered data as per their requirement. If you looking for scraping data from business directories like yelp then send me your requirement and I will get back to you with sample.

Source: http://webdata-scraping.com/scraping-yelp-business-data-python-scraping-script/

Tuesday, 26 May 2015

Data Mining Services

Data Minng Services, through its data mining services can mine required data for you from any of the available sources. Over the years, we have successfully catered to wide variety of outsource data mining requirements, which specifies our competency in dealing with your data mining requirements.

Based on your requirements, we can mine data from your preferred data sources, or we will use our own reliable sources to mine the data required by you. We have been using automated as well manual data mining strategies to deliver superior data mining services.

Types of data mining services delivered by us

With an extensive variety of data mining services provided by us, you will definitely be able to find the most perfect service package to cater to your requirements. Below listed are just some of the data mining services offered by us:

•    Web data mining
•    Data extraction
•    Data capture
•    Data gathering
•    Collection of required data
•    Validation of data

Outsource data mining requirements to us, and we are sure that the data mining India unit of Hi-Tech BPO Services will be able to formulate the most appropriate and cost effective solutions to include your entire requirements.

Highlights of our data mining services:

•    Most affordable rates
•    Dedicated data mining India unit
•    Latest data mining technologies used to mine all required data
•    Data will be mined, gathered, processed and validated as per your requirements
•    Mined data can be directly included into your database

Competitive advantage of using our data mining services

To mine accurate and relevant data, some level of internet knowledge is essential. And it would also consume a lot of your valuable time. With our data mining services, we will take care of all your data mining tasks, while you look after your business and its core functions.

The affordably priced data mining services delivered by the data mining India unit will also help you to save considerable amount of your money, which you can put into more productive purposes.

Source: http://www.hitechbposervices.com/data-mining.php