Sunday, 30 November 2014

Web Scraping’s 2013 Review – part 1

Here we are, almost having ended another year and having the chance to analyze the aspects of the Web scraping market over the last twelve months. First of all i want to underline all the buzzwords on the tech field as published in the Yahoo’s year in review article . According to Yahoo, the most searched items wore

  •     iPhone (including 4, 5, 5s, 5c, and 6)
  •     Samsung (including Galaxy, S4, S3, Note)
  •     Siri
  •     iPad Cases
  •     Snapchat
  •     Google Glass
  •     Apple iPad
  •     BlackBerry Z10
  •     Cloud Computing

It’s easy to see that none of this terms regards in any way with the field of data mining, and they rather focus on the gadgets and apps industry, which is just one of the ways technology can evolve to. Regarding actual data mining industry there were a lot of talks about it in this year’s MIT’s Engaging Data 2013 Conference. One of the speakers Noam Chomsky gave an acid speech relating data extraction and its connection to the Big Data phenomena that is also on everyone’s lips this year. He defined a good way to see if Big Data works by following a series of few simple factors: 1. It’s the analysis, not the raw data, that counts. 2. A picture is worth a thousand words 3. Make a big data portal (Not sure if Facebook is planning on dominating in cloud services some day) 4. Use a hybrid organizational model (We’re asleep already, soon)  let’s move 5. Train employees Other interesting declaration  was given by EETimes saying, “Data science will do more for medicine in the next 10 years than biological science.” which says a lot about the volume of required extracted data.

Because we want to cover as many as possible events about data mining this article will be a two parter, so don’t forget to check our blog tomorrow when the second part of this article will come up!

Source:http://thewebminer.com/blog/2013/12/

Thursday, 27 November 2014

Scraping XML Tables with R

A couple of my good friends also recently started a sports analytics blog. We’ve decided to collaborate on a couple of studies revolving around NBA data found at www.basketball-reference.com. This will be the first part of that project!

Data scientists need data. The internet has lots of data. How can I get that data into R? Scrape it!

People have been scraping websites for as long as there have been websites. It’s gotten pretty easy using R/Python/whatever other tool you want to use. This post shows how to use R to scrape the demographic information for all NBA and ABA players listed at www.basketball-reference.com.

Here’s the code:

###### Settings

library(XML)

 ###### URLs

url<-paste0("http://www.basketball-reference.com/players/",letters,"/")

len<-length(url)

 ###### Reading data

tbl<-readHTMLTable(url[1])[[1]]

 for (i in 2:len)

    {tbl<-rbind(tbl,readHTMLTable(url[i])[[1]])}

 ###### Formatting data

colnames(tbl)<-c("Name","StartYear","EndYear","Position","Height","Weight","BirthDate","College")

tbl$BirthDate<-as.Date(tbl$BirthDate[1],format="%B %d, %Y")

Created by Pretty R at inside-R.org

And here’s the result:Result

Source: http://www.r-bloggers.com/scraping-xml-tables-with-r/

Wednesday, 26 November 2014

Data Mining KNN Classifier

Q1   

Suppose a data analyst working for an insurance company was asked to build a predictive model for predicting weather a customer will buy a mobile home insurance policy. S/he tried kNN classifier with different number of neighbours (k=1,2,3,4,5). S/he got the following F-scores measured on the training data: (1.0; 0.92; 0.90; 0.85; 0.82). Based on that the analyst decided to deploy kNN with k=1. Was it a good choice? How would you select an optimal number of neighbours in this case?

1 Answer

It is not a good idea to select a parameter of a prediction algorithm using the whole training set as the result will be biased towards this particular training set and has no information about generalization performance (i.e. performance towards unseen cases). You should apply a cross-validation technique e.g. 10-fold cross-validation to select the best K (i.e. K with largest F-value) within a range. This involves splitting your training data in 10 equal parts retain 9 parts for training and 1 for validation. Iterate such that each part has been left out for validation. If you take enough folds this will allow you as well to obtain statistics of the F-value and then you can test whether these values for different K values are statistically significant.

See e.g. also: http://pic.dhe.ibm.com/infocenter/spssstat/v20r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Falg_knn_training_crossvalidation.htm

The subtlety here however is that there is likely a dependency between the number of data points for prediction and the K-value. So If you apply cross-validation you use 9/10 of the training set for training...Not sure whether any research has been performed on this and how to correct for that in the final training set. Anyway most software packages just use the abovementioned techniques e.g. see SPSS in the link. A solution is to use leave-one-out cross-validation (each data samples is left out once for testing) in that case you have N-1 training samples(the original training set has N).

Source:http://stackoverflow.com/questions/21121509/data-mining-knn-classifier?rq=1

Sunday, 23 November 2014

Using Kimono Labs to Scrape the Web for Free

Historically, I have written and presented about big data—using data to create insights, and how to automate your data ingestion process by connecting to APIs and leveraging advanced database technologies.

Recently I spoke at SMX West about leveraging the rich data in webmaster tools. After the panel, I was approached by the in-house SEO of a small company, who asked me how he could extract and leverage all the rich data out there without having a development team or large budget. I pointed him to the CSV exports and some of the more hidden tools to extract Google data, such as the GA Query Builder and the YouTube Analytics Query Builder.

However, what do you do if there is no API? What do you do if you want to look at unstructured data, or use a data source that does not provide an export?

For today's analytics pros, the world of scraping—or content extraction (sounds less black hat)—has evolved a lot, and there are lots of great technologies and tools out there to help solve those problems. To do so, many companies have emerged that specialize in programmatic content extraction such as Mozenda, ScraperWiki, ImprtIO, and Outwit, but for today's example I will use Kimono Labs. Kimono is simple and easy to use and offers very competitive pricing (including a very functional free version). I should also note that I have no connection to Kimono; it's simply the tool I used for this example.

Before we get into the actual "scraping" I want to briefly discuss how these tools work.

The purpose of a tool like Kimono is to take unstructured data (not organized or exportable) and convert it into a structured format. The prime example of this is any ranking tool. A ranking tool reads Google's results page, extracts the information and, based on certain rules, it creates a visual view of the data which is your ranking report.

Kimono Labs allows you to extract this data either on demand or as a scheduled job. Once you've extracted the data, it then allows you to either download it via a file or extract it via their own API. This is where Kimono really shines—it basically allows you to take any website or data source and turn it into an API or automated export.

For today's exercise I would like to create two scrapers.

A. A ranking tool that will take Google's results and store them in a data set, just like any other ranking tool. (Disclaimer: this is meant only as an example, as scraping Google's results is against Google's Terms of Service).

B. A ranking tool for Slideshare. We will simulate a Slideshare search and then extract all the results including some additional metrics. Once we have collected this data, we will look at the types of insights you are able to generate.

1. Sign up

Signup is simple; just go to http://www.kimonolabs.com/signup and complete the form. You will then be brought to a welcome page where you will be asked to drag their bookmarklet into your bookmarks bar.

The Kimonify Bookmarklet is the trigger that will start the application.

2. Building a ranking tool

Simply navigate your browser to Google and perform a search; in this example I am going to use the term "scraping." Once the results pages are displayed, press the kimonify button (in some cases you might need to search again). Once you complete your search you should see a screen like the one below:

It is basically the default results page, but on the top you should see the Kimono Tool Bar. Let's have a close look at that:

The bar is broken down into a few actions:

    URL – Is the current URL you are analyzing.

    ITEM NAME – Once you define an item to collect, you should name it.

    ITEM COUNT – This will show you the number of results in your current collection.

    NEW ITEM – Once you have completed the first item, you can click this to start to collect the next set.

    PAGINATION – You use this mode to define the pagination link.

    UNDO – I hope I don't have to explain this ;)

    EXTRACTOR VIEW – The mode you see in the screenshot above.

    MODEL VIEW – Shows you the data model (the items and the type).

    DATA VIEW – Shows you the actual data the current page would collect.

    DONE – Saves your newly created API.

After you press the bookmarklet you need to start tagging the individual elements you want to extract. You can do this simply by clicking on the desired elements on the page (if you hover over it, it changes color for collectable elements).

Kimono will then try to identify similar elements on the page; it will highlight some suggested ones and you can confirm a suggestion via the little checkmark:

A great way to make sure you have the correct elements is by looking at the count. For example, we know that Google shows 10 results per page, therefore we want to see "10" in the item count box, which indicates that we have 10 similar items marked. Now go ahead and name your new item group. Each collection of elements should have a unique name. In this page, it would be "Title".

Now it's time to confirm the data; just click on the little Data icon to see a preview of the actual data this page would collect. In the data view you can switch between different formats (JSON, CSV and RSS). If everything went well, it should look like this:

As you can see, it not only extracted the visual title but also the underlying link. Good job!

To collect some more info, click on the Extractor icon again and pick out the next element.

Now click on the Plus icon and then on the description of the first listing. Since the first listing contains site links, it is not clear to Kimono what the structure is, so we need to help it along and click on the next description as well.

As soon as you do this, Kimono will identify some other descriptions; however, our count only shows 8 instead of the 10 items that are actually on that page. As we scroll down, we see some entries with author markup; Kimono is not sure if they are part of the set, so click the little checkbox to confirm. Your count should jump to 10.

Now that you identified all 10 objects, go ahead and name that group; the process is the same as in the Title example. In order to make our Tool better than others, I would like to add one more set— the author info.

Once again, click the Plus icon to start a new collection and scroll down to click on the author name. Because this is totally unstructured, Google will make a few recommendations; in this case, we are working on the exclusion process, so press the X for everything that's not an author name. Since the word "by" is included, highlight only the name and not "by" to exclude that (keep in mind you can always undo if things get odd).

Once you've highlighted both names, results should look like the one below, with the count in the circle being 2 representing the two authors listed on this page.

Out of interest I did the same for the number of people in their Google+ circles. Once you have done that, click on the Model View button, and you should see all the fields. If you click on the Data View you should see the data set with the authors and circles.

As a final step, let's go back to the Extractor view and define the pagination; just click the Pagination button (it looks like a book) and select the next link. Once you have done that, click Done.

You will be presented with a screen similar to this one:

Here you simply name your API, define how often you want this data to be extracted and how many pages you want to crawl. All of these settings can be changed manually; I would leave it with On demand and 10 pages max to not overuse your credits.

Once you've saved your API, there are a ton of options (too many to review here). Kimono has a great learning section you can check out any time.

To collect the listings requires a quick setup. Click on the pagination tab, turn it on and set your schedule to On demand to pull data when you ask it to. Your screen should look like this:

Now press Crawl and Kimono will start collecting your data. If you see any issues, you can always click on Edit API and go back to the extraction screen.

Once the crawl is completed, go to the Test Endpoint tab to view or download your data (I prefer CSV because you can easily open it in Excel, CSV, Spotfire, etc.) A possible next step here would be doing this for multiple keywords and then analyzing the impact of, say, G+ Authority on rankings. Again, many of you might say that a ranking tool can already do this, and that's true, but I wanted to cover the basics before we dive into the next one.

3. Extracting SlideShare data

With Slideshare's recent growth in popularity it has become a document sharing tool of choice for many marketers. But what's really on Slideshare, who are the influencers, what makes it tick? We can utilize a custom scraper to extract that kind data from Slideshare.

To get started, point your browser to Slideshare and pick a keyword to search for.

For our example I want to look at presentations that talk about PPC in English, sorted by popularity, so the URL would be:

http://www.slideshare.net/search/slideshow?ft=presentations&lang=en&page=1&q=ppc&qf=qf1&sort=views&ud=any

Once you are on that page, pick the Kimonify button as you did earlier and tag the elements. In this case I will tag:

    Title
    Description
    Category
    Author
    Likes
    Slides

Once you have tagged those, go ahead and add the pagination as described above.

That will make a nice rich dataset which should look like this:

Hit Done and you're finished. In order to quickly highlight the benefits of this rich data, I am going to load the data into Spotfire to get some interesting statics (I hope).

4. Insights

Rather than do a step-by-step walktrough of how to build dashboards, which you can find here, I just want to show you some insights you can glean from this data:

    Most Popular Authors by Category. This shows you the top contributors and the categories they are in for PPC (squares sized by Likes)

    Correlations. Is there a correlation between the numbers of slides vs. the number of likes? Why not find out?
    Category with the most PPC content. Discover where your content works best (most likes).

5. Output

One of the great things about Kimono we have not really covered is that it actually converts websites into APIs. That means you build them once, and each time you need the data you can call it up. As an example, if I call up the Slideshare API again tomorrow, the data will be different. So you basically appified Slisdeshare. The interesting part here is the flexibility that Kimono offers. If you go to the How to Use slide, you will see the way Kimono treats the Source URL In this case it looks like this:

The way you can pull data from Kimono aside from the export is their own API; in this case you call the default URL,

http://www.kimonolabs.com/api/YOURPAIID?apikey=YO...

You would get the default data from the original URL; however, as illustrated in the table above, you can dynamically adjust elements of the source URL.

For example, if you append "&q=SEO"

(http://www.kimonolabs.com/api/YOURPAIID?apikey=YOURAPIKEY&q=SEO)

you would get the top slides for SEO instead of PPC. You can change any of the URL options easily.

I know this was a lot of information, but believe me when I tell you, we just scratched the surface. Tools like Kimono offer a variety of advanced functions that really open up the possibilities. Once you start to realize the potential, you will come up with some amazing, innovative ideas. I would love to see some of them here shared in the comments. So get out there and start scraping … and please feel free to tweet at me or reply below with any questions or comments!

Source: http://moz.com/blog/web-scraping-with-kimono-labs

Wednesday, 19 November 2014

Web Scraping for SEO with these Open-Source Scrapers

When conducting Search Engine Optimization (SEO), we’re required to scrape websites for data, our campaigns, and reports for our clients. At the lowest level we utilize scraping to keep track of rankings on search engines like Google, Bing, and Yahoo, even keep a track of links on websites to know when it’s completed its lifespan. Then we’ve used them to help us aggregate data from APIs, RSS feeds, and websites to conduct some of our data mining to find patterns to help us become more competitive. 

So scraping is a function majority of companies (SEOmoz, Raventools, and Google) have to do to either save money, protect intellectual property, track trends, etc… Businesses can find infinite uses with scraping tools, it just depends if you’re an printed circuit board manufacturer looking for ideas on your e-mail marketing campaign or a Orange County based business trying to keep an eye out on the competition. which is why we’ve created a comprehensive list of open source scrapers out there to help all the businesses out there. Just keep in mind we haven’t used all of them!

Words of caution, web scrapers require knowledge specific to the language such as PHP & cURL. Take into considerations issues like cookie management, fault tolerance, organizing the data properly, not crashing the website being scraped, and making sure the website doesn’t prohibit scraping.

If you’re ready, here’s the list…

Erlang

    eBot

Java

    Heritrix
    Nutch
    Piggy Bank
    WebSPHINX
    WebHarvest

PHP

    PHPCrawl
    Snoopy
    SpiderMonkey

Python

    BeautifulSoap
    HarvestMan
    Scrape.py
    Scrapemark
    Scrapy **
    Mechanize

Ruby

    Anemone
    scRUBYt

We’ll come back and update this list as we encounter more! If you would like to submit a solution we missed, feel free. Also we’re looking for guides related to each of these, so if you know of any or would be interested in guesting blogging about one, let us know!

Source:http://www.annexcore.com/blog/web-scraping-for-seo-with-these-open-source-scrapers/

Monday, 17 November 2014

How to scrape data without coding? A step by step tutorial on import.io

Import.io (pronounced import-eye-oh) lets you scrape data from any website into a searchable database. It is perfect for gathering, aggregating and analysing data from websites without the need for coding skills. As Sally Hadadi, from Import.io, told Journalism.co.uk: the idea is to “democratise” data. “We want journalists to get the best information possible to encourage and enhance unique, powerful pieces of work and generally make their research much easier.” Different uses for journalists, supplemented by case studies, can be found here.

A beginner’s guide

After downloading and opening import.io browser, copy the URL of the page you want to scrape into the import.io browser. I decided to scrape the search results website of orphanages in London:

001 Orphanages in London

After opening the website, press the tiny pink button in top right corner of the browser and follow up with “Let’s get cracking!” in the bottom right menu which has just appeared.

Then, choose the type of scraping you want to perform. In my case, it’s a Crawler (we’ll be getting data from multiple similar pages on the same site):

crawler

And confirm the URL of the website you want to scrape by clicking “I’m there”.

As advised, choose “Detect optimal settings” and confirm the following:

data

In the menu “Rows per page” select the format in which data appears on the website, whether it is “single” or “multiple”. I’m opting for the multiple as my URL is a listing of multiple search results:multiple

Now, the time has come to “train your rows” i.e. mark which part of the website you are interested in scraping. Hover over an entire “entry” or “paragraph”:hover over entry

…and he entry will be highlighted in pink or blue. Press “Train rows”.

train rows

Repeat the operation with the next entry/paragraph so that the scraper gets the hang of the pattern of your selections. Two examples should suffice. Scroll down to the bottom of your website to make sure that all entries until the last one are selected (=highlighted in pink or blue alternately).

If it is, press “I’ve got all 50 rows” (the number depends on how many rows you have selected).

Now it’s time to focus on particular chunks of data you would like to extract. My entries consist of a name of the orphanage, address, phone number and a short description so I will extract all those to separate columns. Let’s start by adding a column “name”:

add column

Next, highlight the name of the first orphanage in the list and press “Train”.

highlighttrain

Your table should automatically fill in with names of all orphanages in the list:table name

If it didn’t, try tweaking your selection a bit. Then add another column “address” and extract the address of the orphanage by highlighting the two lines of addresses and “training” the rows.

Repeat the operation for a “phone number” and “description”. Your table should end up looking like this:table final

*Before passing on to the next column it is worth to check that all the rows have filled up. If not, highlighting and training of the individual elements might be necessary.

Once you’ve grabbed all that you need, click “I’ve got what I need”. The menu will now ask you if you want to scrape more pages. In this case, the search yielded two pages of search results so I will add another page. In order to this this, go back to your website in you regular browser, choose page 2 (or any next one) of your search results and copy the URL. Paste it into the import.io browser and confirm by clicking “I’m there”:

i'm there

The scraper should automatically fill in your table for page 2. Click “I’ve got all 45 rows” and “I’ve got what I needed”.

You need to add at least 5 pages, which is a bit frustrating with a smaller data set like this one. The way around it is to add page 2 a couple of times and delete the unnecessary rows in the final table.

Once the cheating is done, click “I’m done training!” and “Upload to import.io”.

upload

Give the name to your Crawler, e.g. “Orphanages in London” and wait for import.io to upload your data. Then, run crawler:run crawler

Make sure that the page depth is 10 and that click “Go”. If you’re scraping a huge dataset with several pages of search results, you can copy your URLs to Excel, highlight them and drag down with a black cross (bottom right of the cell) to obtain a comprehensive list. Paste it into the “Where to start?” window and press “Go”.go

crawlingAfter the crawling is complete, you can download you data in EXCEL, HTML, JSON or CSV.dataset

As a result, we obtain a data set which can be easily turned into a map of orphanages in London, e.g. using Google Fusion Tables.

Source:http://www.interhacktives.com/2014/03/06/scrape-data-without-coding-step-step-tutorial-import-io/

Saturday, 15 November 2014

Is Web Scraping Legal?

Web scraping might be one of the best ways to aggregate content from across the internet, but it comes with a caveat: It’s also one of the hardest tools to parse from a legal standpoint.

For the uninitiated, web scraping is a process whereby an automated piece of software extracts data from a website by “scraping” through the site’s many pages. While search engines like Google and Bing do a similar task when they index web pages, scraping engines take the process a step further and convert the information into a format which can be easily transferred over to a database or spreadsheet.

It’s also important to note that a web scraper is not the same as an API. While a company might provide an API to allow other systems to interact with its data, the quality and quantity of data available through APIs is typically lower than what is made available through web scraping. In addition, web scrapers provide more up-to-date information than APIs and are much easier to customize from a structural standpoint.

The applications of this “scraped” information are widespread. A journalist like Nate Silver might use scrapers to monitor baseball statistics and create numerical evidence for a new sports story he’s working on. Similarly, an eCommerce business might bulk scrape product titles, prices, and SKUs from other sites in order to further analyze them.

Legality of Web ScrapingWhile web scraping is an undoubtedly powerful tool, it’s still undergoing growing pains when it comes to legal matters. Because the scraping process appropriates pre-existing content from across the web, there are all kinds of ethical and legal quandaries that confront businesses who hope to do leverage scrapers for their own processes.

In this “wild west” environment, where the legal implications of web scraping are in a constant state of flux, it helps to get a foothold on where the legal needle currently falls. The following timeline outlines some of the biggest cases involving web scrapers in the United States, and allows us to achieve a greater understanding on the precedents that surround the court rulings.

Terms of Use Tug-of-War—2000-2009

For years after they first came into use, web scrapers went largely unchallenged from a legal standpoint. In 2000, however, the use of scrapers came under heavy and consistent fire when eBay fired the first shot against an auction data aggregator called Bidder’s Edge. In this very early case, eBay argued that Bidder’s Edge was using scrapers in a way that violated Trespass to Chattels doctrine. While the lawsuit was settled out of court, the judge upheld eBay’s original injunction, stating that heavy bot traffic could very well disrupt eBay’s service.

Then in 2003’s Intel Corp. v. Hamidi, the California Supreme court overturned the basis of eBay v. Bidder’s Edge, ruling that Trespass to Chattels could not extend to the context of computers if no actual damage to personal property occurred.

So in terms of legal action against web scraping, Tresspass to Chattels no longer applied, and things were back to square one. This began a period in which the courts consistently rejected Terms of Service as a valid means of prohibiting scrapers, including cases like Perfect 10 v. Google, and Cvent v. Eventbrite.

The Takeaway: The earliest cases against scrapers hinged on Trespass to Chattels law, and were successful. However, that doctrine is no longer a valid approach.

Facebook Web Scraping2009—Facebook Steps In

In 2009, Facebook turned the tides of the web scraping war when Power.com, a site which aggregated multiple social networks into one centralized site, included Facebook in their service. Because Power.com was scraping Facebook’s content instead of adhering to their established standards, Facebook sued Power on grounds of copyright infringement.

In denying Power.com’s motion to dismiss the case, the Judge ruled that scraping can constitute copying, however momentary that copying may be. And because Facebook’s Terms of Service don’t allow for scraping, that act of copying constituted an infringement on Facebook’s copyright. With this decision, the waters regarding the legality of web scrapers began to shift in favor of the content creators.

The Takeaway: Even if a web scraper ignores infringing content on its way to freely-usable content, it might qualify as copyright infringement by virtue of having technically “copied” the infringing content first.

2011-2014— U.S. v Auernheimer

In 2010, hacker Andrew “Weev” Auernheimer found a security flaw in AT&T’s website, which would display the email addresses of users who visited the site via their iPads. By exploiting the flaw using some simple scripts and a scraper, Auernheimer was able to gather thousands of emails from the AT&T site.

Although these email addresses were publicly available, Auernheimer’s exploit led to his 2012 conviction, where he was charged with identity fraud and conspiracy to access a computer without authorization.

Data ScrapingEarlier this year, the court vacated Auernheimer’s conviction, ruling that the trial’s New Jersey venue was improper. But even though the case turned out to be mostly inconclusive, the court noted the fact that there was no evidence to show that “any password gate or code-based barrier was breached.” This seems to leave room for the web scraping of publicly-available personal information, although it’s still very much open to interpretation and not set in stone.

The Takeaway: Using a web scraper to aggregate sensitive personal information can lead to a conviction, even if that information was technically available to the public. While there is hope in the court’s observation that no passwords or barriers were broken to retrieve this information, the waters here are still very volatile.

2013—Associated Press vs. Meltwater

Meltwater is a software company whose “Global Media Monitoring” product uses scrapers to aggregate news stories for paying clients. The Associated Press took issue with Meltwater’s scraping of their original stories, some of which had been copyrighted. In 2012, AP filed suit against Meltwater for copy infringement and hot news misappropriation.

While it’s already been established that facts cannot be copyrighted, the court decided that the AP’s copyrighted articles—and more specifically, the way in which the facts within those articles were arranged—were not fair game for copying. On top of this, Meltwater’s use of the articles failed to meet the established fair use standards, and could not be defended on that front either.

The Takeaway: Fair use is limited when it comes to web scrapers, and copyrighted content is not always open to be scraped.

~~

By closely observing the outcomes of previous rulings, you’ll find that there are a few guidelines that a scraper should attempt to adhere to:

    Content being scraped is not copyright protected
    The act of scraping does not burden the services of the site being scraped
    The scraper does not violate the Terms of Use of the site being scraped
    The scraper does not gather sensitive user information
    The scraped content adheres to fair use standards

While all of these guidelines are important to understand before using scrapers, there are other ways to acclimate to the legal nuances. In many cases, you’ll find that a simple conversation with a business software developer or consultant will lead to some satisfying conclusions: Odds are, they’ve used scrapers in the past and can shed light on any snags they’ve hit in the process. And of course, talking with a lawyer is always an ideal course of action when treading into questionable legal territory.

Source:http://blog.icreon.us/2014/09/12/web-scraping-and-you-a-legal-primer-for-one-of-its-most-useful-tools/

Thursday, 13 November 2014

The PromptCloud Advantage- Web Scraping with an Edge

The global market is now more aware of its data scraping needs. And so with the demand, the list of suppliers has grown too. This post is dedicated to bringing out the PromptCloud Advantage among such providers.

PromptCloud-Winning-The Race

1. The know-how- Crawling the web, as mundane as it may sound, is a fairly complex task. No one is to be blamed for overlooking the complexity as these things surface only after you’ve tried it yourself and delved into the nitty-gritty. The design decisions you take sit at the core of what you build and eventually monetize. And the long-term effects of such architectural choices are as pleasing if you’ve done it right as disturbing they might turn out if you’re not far-sighted.

Although the expertise of building the tech stack for such large-scale data acquisition, distributing your clusters (and putting thoughts into their geographical locations), maintaining queues, databases and backups, does come from ‘been there done that’, we have been lucky to have the tech advantage imbibed into us since inception. Not that we got it right the first time, but our systems have evolved with technologies, improving each day. Now that we have been there in this business for the last 56 months, it does feel like a long journey for our stack and yes, we do know better :)

2. SLAs- SLAs are what bolsters the data itself. PromptCloud’s key SLAs are scale and quality; while not compromising the data coverage or the politeness policies on your sources. Since we perform focused crawls, there’s no dilution of data and you can consume it all or ask us to index it in order to search using logical combinations in queries. For your reference, here’s a list of all SLAs to visit while picking your data service provider.

changing_place_changing_time_changing_thouts_changing_future.

3. The Experience- There are many scraping tools and crawling services in the market which might just serve the need. What PromptCloud provides is a data acquisition experience; and we go as many number of extra miles as you’d like us to go for it. By leveraging our DaaS platform, we make sure you get what you need from the time you start your research for a data provider through importing the data feeds into your database. We hear your requirements in detail, make sure we’ve got it right by sharing samples and going multiple iterations of reprocessing the data to match your needs while you battle internally on freezing your requirements. But what’s more magical is the way all these feeds get delivered to you, at the intervals you requested; programatically.

It might be evident for the SLAs and the know-how fusing to provide the experience, but it’s that additional human touch that actually aids in sustaining it. We make sure you’re at peace while our systems handle the roadblocks and sort out the messiness on the web.

Source:https://www.promptcloud.com/blog/the-promptcloud-advantage-web-scraping/

Wednesday, 12 November 2014

A Content Marketer's Guide to Data Scraping

As digital marketers, big data should be what we use to inform a lot of the decisions we make. Using intelligence to understand what works within your industry is absolutely crucial within content campaigns, but it blows my mind to know that so many businesses aren't focusing on it.

One reason I often hear from businesses is that they don't have the budget to invest in complex and expensive tools that can feed in reams of data to them. That said, you don't always need to invest in expensive tools to gather valuable intelligence — this is where data scraping comes in.

Just so you understand, here's a very brief overview of what data scraping is from Wikipedia:

    "Data scraping is a technique in which a computer program extracts data from human-readable output coming from another program."

Essentially, it involves crawling through a web page and gathering nuggets of information that you can use for your analysis. For example, you could search through a site like Search Engine Land and scrape the author names of each of the posts that have been published, and then you could correlate this to social share data to find who the top performing authors are on that website.

Hopefully, you can start to see how this data can be valuable. What's more, it doesn't require any coding knowledge — if you're able to follow my simple instructions, you can start gathering information that will inform your content campaigns. I've recently used this research to help me get a post published on the front page of BuzzFeed, getting viewed over 100,000 times and channeling a huge amount of traffic through to my blog.

Disclaimer: One thing that I really need to stress before you read on is the fact that scraping a website may breach its terms of service. You should ensure that this isn't the case before carrying out any scraping activities. For example, Twitter completely prohibits the scraping of information on their site. This is from their Terms of Service:

    "crawling the Services is permissible if done in accordance with the provisions of the robots.txt file, however, scraping the Services without the prior consent of Twitter is expressly prohibited"

Google similarly forbids the scraping of content from their web properties:

    Google's Terms of Service do not allow the sending of automated queries of any sort to our system without express permission in advance from Google.

So be careful, kids.

Content analysis

Mastering the basics of data scraping will open up a whole new world of possibilities for content analysis. I'd advise any content marketer (or at least a member of their team) to get clued up on this.

Before I get started on the specific examples, you'll need to ensure that you have Microsoft Excel on your computer (everyone should have Excel!) and also the SEO Tools plugin for Excel (free download here). I put together a full tutorial on using the SEO tools plugin that you may also be interested in.

Alongside this, you'll want a web crawling tool like Screaming Frog's SEO Spider or Xenu Link Sleuth (both have free options). Once you've got these set up, you'll be able to do everything that I outline below.

So here are some ways in which you can use scraping to analyse content and how this can be applied into your content marketing campaigns:

1. Finding the different authors of a blog

Analysing big publications and blogs to find who the influential authors are can give you some really valuable data. Once you have a list of all the authors on a blog, you can find out which of those have created content that has performed well on social media, had a lot of engagement within the comments and also gather extra stats around their social following, etc.

I use this information on a daily basis to build relationships with influential writers and get my content placed on top tier websites. Here's how you can do it:

Step 1: Gather a list of the URLs from the domain you're analysing using Screaming Frog's SEO Spider. Simply add the root domain into Screaming Frog's interface and hit start (if you haven't used this tool before, you can check out my tutorial here).

Once the tool has finished gathering all the URLs (this can take a little while for big websites), simply export them all to an Excel spreadsheet.

Step 2: Open up Google Chrome and navigate to one of the article pages of the domain you're analysing and find where they mention the author's name (this is usually within an author bio section or underneath the post title). Once you've found this, right-click their name and select inspect element (this will bring up the Chrome developer console).

Within the developer console, the line of code associated to the author's name that you selected will be highlighted (see the below image). All you need to do now is right-click on the highlighted line of code and press Copy XPath.

For the Search Engine Land website, the following code would be copied:

//*[@id="leftCol"]/div[2]/p/span/a

This may not make any sense to you at this stage, but bear with me and you'll see how it works.

Step 3: Go back to your spreadsheet of URLs and get rid of all the extra information that Screaming Frog gives you, leaving just the list of raw URLs – add these to the first column (column A) of your worksheet.

Step 4: In cell B2, add the following formula:

=XPathOnUrl(A2,"//*[@id='leftCol']/div[2]/p/span/a")

Just to break this formula down for you, the function XPathOnUrl allows you to use the XPath code directly within (this is with the SEO Tools plugin installed; it won't work without this). The first element of the function specifies which URL we are going to scrape. In this instance I've selected cell A2, which contains a URL from the crawl I did within Screaming Frog (alternatively, you could just type the URL, making sure that you wrap it within quotation marks).

Finally, the last part of the function is our XPath code that we gathered. One thing to note is that you have to remove the quotation marks from the code and replace them with apostrophes. In this example, I'm referring to the "leftCol" section, which I've changed to ‘leftCol' — if you don't do this, Excel won't read the formula correctly.

Once you press enter, there may be a couple of seconds delay whilst the SEO Tools plugin crawls the page, then it will return a result. It's worth mentioning that within the example I've given above, we're looking for author names on article pages, so if I try to run this on a URL that isn't an article (e.g. the homepage) I will get an error.

For those interested, the XPath code itself works by starting at the top of the code of the URL specified and following the instructions outlined to find on-page elements and return results. So, for the following code:

//*[@id='leftCol']/div[2]/p/span/a

We're telling it to look for any element (//*) that has an id of leftCol (@id='leftCol') and then go down to the second div tag after this (div[2]), followed by a p tag, a span tag and finally, an a tag (/p/span/a). The result returned should be the text within this a tag.

Don't worry if you don't understand this, but if you do, it will help you to create your own XPath. For example, if you wanted to grab the output of an a tag that has rel=author attached to it (another great way of finding page authors), then you could use some XPath that looked a little something like this:

//a[@rel='author']

As a full formula within Excel it would look something like this:

=XPathOnUrl(A2,"//a[@rel='author']")

Once you've created the formula, you can drag it down and apply it to a large number of URLs all at once. This is a huge time-saver as you'd have to manually go through each website and copy/paste each author to get the same results without scraping – I don't need to explain how long this would take.

Now that I've explained the basics, I'll show you some other ways in which scraping can be used…

2. Finding extra details around page authors

So, we've found a list of author names, which is great, but to really get some more insight into the authors we will need more data. Again, this can often be scraped from the website you're analysing.

Most blogs/publications that list the names of the article author will actually have individual author pages. Again, using Search Engine Land as an example, if you click my name at the top of this post you will be taken to a page that has more details on me, including my Twitter profile, Google+ profile and LinkedIn profile. This is the kind of data that I'd want to gather because it gives me a point of contact for the author I'm looking to get in touch with.

Here's how you can do it.

Step 1: First we need to get the author profile URLs so that we can scrape the extra details off of them. To do this, you can use the same approach to find the author's name, with just a little addition to the formula:

=XPathOnUrl(A2,"//a[@rel='author']", <strong>"href"</strong>)

The addition of the "href" part of the formula will extract the output of the href attribute of the atag. In Lehman terms, it will find the hyperlink attached to the author name and return that URL as a result.

Step 2: Now that we have the author profile page URLs, you can go on and gather the social media profiles. Instead of scraping the article URLs, we'll be using the profile URLs.

So, like last time, we need to find the XPath code to gather the Twitter, Google+ and LinkedIn links. To do this, open up Google Chrome and navigate to one of the author profile pages, right-click on the Twitter link and select Inspect Element.

Once you've done this, hover over the highlighted line of code within Chrome's developer tools, right-click and select Copy XPath.

Step 3: Finally, open up your Excel spreadsheet and add in the following formula (using the XPath that you've copied over):

=XPathOnUrl(C2,"//*[@id='leftCol']/div[2]/p/a[2]", "href")

Remember that this is the code for scraping Search Engine Land, so if you're doing this on a different website, it will almost certainly be different. One important thing to highlight here is that I've selected cell C2 here, which contains the URL of the author profile page and not just the article page. As well as this, you'll notice that I've included "href" at the end because we want the actual Twitter profile URL and not just the words ‘Twitter'.

You can now repeat this same process to get the Google+ and LinkedIn profile URLs and add it to your spreadsheet. Hopefully you're starting to see the value in this, and how it can be used to gather a lot of intelligence that can be used for all kinds of online activity, not least your SEO and social media campaigns.

3. Gathering the follower counts across social networks

Now that we have the author's social media accounts, it makes sense to get their follower counts so that they can be ranked based on influence within the spreadsheet.

Here are the final XPath formulae that you can plug straight into Excel for each network to get their follower counts. All you'll need to do is replace the text INSERT SOCIAL PROFILE URL with the cell reference to the Google+/LinkedIn URL:

Google+:

=XPathOnUrl(<strong>INSERTGOOGLEPROFILEURL</strong>,"//span[@class='BOfSxb']")

LinkedIn:

=XPathOnUrl(<strong>INSERTLINKEDINURL</strong>,"//dd[@class='overview-connections']/p/strong")

4. Scraping page titles

Once you've got a list of URLs, you're going to want to get an idea of what the content is actually about. Using this quick bit of XPath against any URL will display the title of the page:

=XPathOnUrl(A2,"//title")

To be fair, if you're using the SEO Tools plugin for Excel then you can just use the built-in feature to scrape page titles, but it's always handy to know how to do it manually!

A nice extra touch for analysis is to look at the number of words used within the page titles. To do this, use the following formula:

=CountWords(A2)

From this you can get an understanding of what the optimum title length of a post within a website is. This is really handy if you're pitching an article to a specific publication. If you make the post the best possible fit for the site and back up your decisions with historical data, you stand a much better chance of success.

Taking this a step further, you can gather the social shares for each URL using the following functions:

Twitter:

=TwitterCount(<strong>INSERTURLHERE</strong>)

Facebook:

=FacebookLikes(<strong>INSERTURLHERE</strong>)

Google+:

=GooglePlusCount(<strong>INSERTURLHERE</strong>)

Note: You can also use a tool like URL Profiler to pull in this data, which is much better for large data sets. The tool also helps you to gather large chunks of data from other social networks, link data sources like Ahrefs, Majestic SEO and Moz, which is awesome.

If you want to get even more social stats then you can use the SharedCount API, and this is how you go about doing it…

Firstly, create a new column in your Excel spreadsheet and add the following formula (where A2 is the URL of the webpage you want to gather social stats for):

=CONCATENATE("http://api.sharedcount.com/?url=",A2)

You should now have a cell that contains your webpage URL prefixed with the SharedCount API URL. This is what we will use to gather social stats. Now here's the Excel formula to use for each network (where B2 is the cell that contaiins the formula above):

StumbleUpon:

=JsonPathOnUrl(B2,"StumbleUpon")

Reddit:

=JsonPathOnUrl(B2,"Reddit")

Delicious:

=JsonPathOnUrl(B2,"Delicious")

Digg:

=JsonPathOnUrl(B2,"Diggs")

Pinterest:

=JsonPathOnUrl(B2,"Pinterest")

LinkedIn:

=JsonPathOnUrl(B2,"Linkedin")

Facebook Shares:

=JsonPathOnUrl(B2,"Facebook.share_count")

Facebook Comments:

=JsonPathOnUrl(B2,"Facebook.comment_count")

Once you have this data, you can start looking much deeper into the elements of a successful post. Here's an example of a chart that I created around a large sample of articles that I analysed within Upworthy.com.

The chart looks at the average number of social shares that an article on Upworthy receives vs the number of words within its title. This is invaluable data that can be used across a whole host of different on-page elements to get the perfect article template for the site you're pitching to.

See, big data is useful!

5. Date/time the post was published

Along with analysing the details of headlines that are working within a site, you may want to look at the optimal posting times for best results. This is something that I regularly do within my blogs to ensure that I'm getting the best possible return from the time I spend writing.

Every site is different, which makes it very difficult for an automated, one-size-fits-all tool to gather this information. Some sites will have this data within the <head> section of their webpages, but others will display it directly under the article headline. Again, Search Engine Land is a perfect example of a website doing this…

So here's how you can scrape this information from the articles on Search Engine Land:

=XPathOnUrl(<strong>INSERTARTICLEURL</strong>,"//*[@class='dateline']/text()")

Now you've got the date and time of the post. You may want to trim this down and reformat it for your data analysis, but you've got it all in Excel so that should be pretty easy.

Extra reading

Data scraping is seriously powerful, and once you've had a bit of a play around with it you'll also realise that it's not that complicated. The examples that I've given are just a starting point but once you get your creative head on, you'll soon start to see the opportunities that arise from this intelligence.

Here's some extra reading that you might find useful:

    http://findmyblogway.com/scraping-communities-with-xpath/

    http://builtvisible.com/data-entry-is-a-waste-of-time/

    http://www.seotakeaways.com/data-scraping-guide-for-seo/

    http://okdork.com/2014/04/30/the-step-by-step-guide-to-10x-growth-for-any-blog/

TL;DR

    Start using actual data to inform your content campaigns instead of going on your gut feeling.

    Gather intelligence around specific domains you want to target for content placement and create the perfect post for their audience.

    Get clued up on XPath and JSON through using the SEO Tools plugin for Excel.

    Spend more time analysing what content will get you results as opposed to what sites will give you links!

    Check the website's ToS before scraping.

Source:http://moz.com/blog/a-content-marketers-guide-to-data-scraping

Monday, 10 November 2014

Review: import.io’s New Scraping Process and Features

Web scraping Data platform import.io, announced last week that they have secured $3M in funding from investors that include the founders of Yahoo! and MySQL.

They also released a new beta version of the tool that is essentially a better version of their extraction tool, with some new features and a much cleaner and faster user experience.

First Impression

I’ve used the tool for a week and can say it is an improvement over the old version – which was a bit bulky and awkward. While still not exactly the most intuitive process, the development team at import.io has managed to slim down what was a relatively button heavy process, without sacrificing any of the functionality – they made the new workflow both simpler and more complicated at the same.

The new version features a simple tool bar across the top as opposed to the space hogging table and wizard from before, which is a large improvement on the pink and white of the previous version.

True, the loss of the wizard means there isn’t as much guidance as before (the pop-up help only appears on the first use), but the undo button means you don’t really need it. You can click around and experiment a bit with the different extraction options before settling down to do some real work.

Data Extraction

Once you’ve figured out how it works, the new version requires far fewer mouse clicks to get from the page to a table of data/API as shown in their homepage video.

All you need to do now is navigate to a website, click a single piece of data on the page – such as price, image, or URL – and their app will find all the other examples of similar data on the website, immediately creating a structured table of data.

download2

This latest version of the extractor also includes a important new feature labeled “Suggest Data”. Its important because it lets you extract all the data from a page, instantly creating a table of data that can be published as an API. This makes import.io very exciting and quick, I spent a long time playing with this and it worked on the majority of sites.

Advanced Features

Most non-programmer web scrapers struggle with complex sites that use JavaScript or iFrames, but import.io also now deals with this. In the basic mode you can toggle JavaScript and CSS on and off to help you see your data better.

If that doesn’t work, you can switch into an ‘advanced mode’ where import allows you to write your own XPath and RegExp. They’ve also added a source code view, though without the ability to click on the site and inspect element (like in Chrome) this feature isn’t particularly useful.

API Integration

Once you’ve created your scraper, there are a number of options for what you can do with it.

If you’ want you can just copy and paste the data into a spreadsheet or Download as CSV. You can also push your data directly Google Sheets, with import.io’s self generated formula.

For the rest of us, they have surfaced both the POST and GET requests for you and given you a JSON view which allows you to see how the data is returned, which is handy.

All this functionality is nice, and it’s clear they’re trying to cater to all technical levels, but it has made the API page somewhat messy and potentially confusing for newer or less technical users, but they should be able to get what they need.

Good with lots of Potential

Their new tool certainly isn’t perfect. There are still a few sites where manual row training is required and you can’t access the authentication feature (though you can still do this in the old version) or pagination.

Even if it’s not quite there yet, if import.io continue like this, they are well on its way to becoming the best data scraping platform on the market. Especially when you consider the “free for life” price tag.

Source:http://scraping.pro/review-import-ios-new-scraping-tools-features/

Saturday, 8 November 2014

Web Scraping and Copyright

There are rigorous debates on the topic of copyright issues of a scraped data. Whether it is legal to use web scraping to extract data from a website or it’s just an illegal act that will lead you to a troublesome situation. There are certain implementations when we talk of web scraping. There are certain websites that will provide you with RSS feeds.

Just grab the piece use it and get the credit. However there are sites that do not allow such kind of cooperation (as we will call this!) and thus there is no other way to extract reliable data. Another way is to hold the “ctrl” plus “c” keys and wait for a while for the data to be copied to your computer.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/web-scraping-copyright/

Wednesday, 5 November 2014

Why People Hesitate To Try Data Mining

What is hindering a number of people from venturing into the promising world of data mining? Despite so much encouragement, promotions, testimonials, and evidences of the benefits of online data collection, still only a handful take the challenge and really gain the pay offs it has to offer.

It may sound unthinkable that such an opportunity for success has been neglected by many. It may also sound absurd why many well-meaning individuals are hindered from enjoying the benefits of the blessings of the 21st century.

The Causes

After considerable observation and analysis of the human psyche, one can understand the underlying reasons behind the hesitance to try the profitable data mining service. The most common reasons why people are afraid to try new technology or why they remain passive and uninvolved are: fear; lack of knowledge; and pride.

Fear. The most paralyzing of human emotions is fear. It can, to some extent, cause a person to be insane, unprofitable, sick, and lost. Although fear is a normal reaction to certain stimuli and a natural feeling experienced by humans, it must always be monitored and controlled.  Usually, people share common fears, such as: fear of change; fear of anything new; and fear of the unknown.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/people-hesitate-try-data-mining/